Original Research Communication

Regulation of Vascular Responses to Inflammation: Inducible Matrix Metalloproteinase-3 Expression in Human Microvascular Endothelial Cells Is Sensitive to Anti-Inflammatory Boswellia

SASHWATI ROY, SAVITA KHANNA, ALLURI V. KRISHNARAJU, GOTTUMUKKALA V. SUBBARAJU, TAHARAT YASMIN, DEBASIS BAGCHI, and CHANDAN K. SEN

ABSTRACT

Endothelial cells are critical elements in the pathophysiology of inflammation. Tumor necrosis factor (TNF) α potently induces inflammatory responses in endothelial cells. Recently we have examined the genetic basis of the anti-inflammatory effects of Boswellia extract (BE) in a system of TNFα-induced gene expression in human microvascular endothelial cells (HMECs). Of the 522 genes induced by TNFα in HMECs, 113 genes were sensitive to BE. BE prevented the TNFα-induced expression of matrix metalloproteinases (MMPs). In the current work, we sought to test the effects of BE on TNFα-inducible MMP expression in HMECs. Acetyl-11-keto-beta-boswellic acid (AKBA) is known to be an active principle in BE. To evaluate the significance of AKBA in the anti-inflammatory properties of BE, effects of BE containing either 3% (BE3%) or 30% (BE30%) were compared. Pretreatment of HMECs for 2 days with BE potently prevented TNFα-induced expression and activity of MMP-3, MMP-10, and MMP-12. In vivo, BE protected against experimental arthritis. In all experiments, both in vitro and in vivo, BE30% was more effective than BE3%. In sum, this work lends support to our previous report that BE has potent anti-inflammatory properties both in vitro as well as in vivo.

Antioxid. Redox Signal. 8, xx-xx.

INTRODUCTION

Inflammatory disease represent a major problem in human health (11, 13–15, 29, 31). At present, monoclonal antibody-based therapeutics show clear promise in treating inflammatory disorders (19, 24). The central role of tumor necrosis factor (TNF) α in causing inflammation was initially provided by the demonstration that anti-TNFα antibodies added to in vitro cultures of a representative population of cells derived from diseased joints inhibited the spontaneous production of interleukin-1 and other pro-inflammatory cytokines. Systemic administration of anti-TNFα antibody or soluble TNF receptor fusion protein to mouse models of rheumatoid arthritis was shown to be anti-inflammatory and protective for joints (19, 20). Clinical investigations in which the activity of TNFα in rheumatoid arthritis patients was blocked with intravenously administered infliximab, a chimeric anti-TNFα monoclonal antibody, has provided evidence that TNF regulates interleukin-6, interleukin-8, monocyte chemotactant protein-1, and vascular endothelial growth factor production.
recruitment of immune and inflammatory cells into joints, angiogenesis, and reduction of blood levels of matrix metalloproteinases (MMPs)-1 and -3 (19, 20). The development of anti-TNF therapy is a key step forward in rheumatology as it is the first new therapy based on investigating the molecular mechanisms of this disease. Despite such major breakthroughs in investigative medicine, the fact remains that a vast population of individuals in developing countries suffering from inflammatory disorders do not benefit from monoclonal antibody-based therapy primarily because of excessive cost of acquisition and limited availability. For example, the cost associated with a single dose of infliximab is several thousand U.S. dollars (49).

The medical cost of rheumatoid arthritis averages $5,919 per case year in the United States and approximately £2,600 per case year in the United Kingdom. Current slow-acting anti-rheumatic drugs have limited efficacy and many side effects. Moreover, they do not improve the long-term prognosis of rheumatoid arthritis (11). The use of medicinal plants to treat inflammatory disorders continues to be in practice worldwide (8, 10, 12, 18, 30, 36). Medicinal plants often contain complex mixtures of phytochemicals that have additive or synergistic interactions. The anti-inflammatory properties of herbal preparations have been recognized in ancient Indian and Chinese medical literature. The gum resin of *Boswellia serrata*, known in Indian Ayurvedic system of medicine as *Salai guggal*, contains boswellic acids (BAs), which have been shown to inhibit leukotriene biosynthesis. Compounds from the gum with proven anti-inflammatory effects are pentacyclic triterpenes of the BA type. Recently, the tetra-pounds from the gum with proven anti-inflammatory effects in clinical trials promising results supporting the anti-inflammatory properties of BE in vivo. 

**Materials**

Standardized BEs—BE3% and BE30% (also known as 5-oxo-tirucallic acid) have been identified as a key active principle in *Boswellia* resin (7). BAs function as specific, non-redox inhibitors of leukotriene synthesis either interacting directly with 5-lipoxygenase or blocking its translocation (2, 4, 5). Among the BAs, acetyl-11-keto-beta-BA (AKBA) potently inhibits 5-lipoxygenase and blocking its translocation (2, 4, 5). Among the BAs, acetyl-11-keto-beta-BA (AKBA) potently inhibits 5-lipoxygenase product formation with a 50% inhibitory concentration of 1.5 μM. In contrast to the redox type 5-lipoxygenase inhibitor nordihydroguaiaretic acid, BAs in concentrations up to 400 μM did not impair the cyclooxygenase and 12-lipoxygenase in isolated human platelets and the peroxidation of arachidonic acid by Fe-ascorbate. These data support that BAs are specific, non–reducing-type inhibitors of 5-lipoxygenase (41). In addition to their effects on the lipoxygenase system, certain BAs inhibit elastase in leukocytes, inhibit proliferation, induce apoptosis, and inhibit topoisomerases of leukemia and glioma cell lines. A series of chronic inflammatory diseases are plausibly perpetuated by BAs in *H929, H924, and H925* cell lines (22, 23). Stem cells have a central role in tissue repair and regeneration. The enzymatic oxidation of arachidonic acid yields potent pathological agents by two major pathways: cyclooxygenase and lipoxygenase. The lipoxygenase pathway generates a new class of arachidonic acid oxygenation products, called the leukotrienes, which mediate inflammation. Unlike the prostaglandins, some of which play important roles as biological regulators, the action of the lipoxygenase products appear to be exclusively of a pathological nature (28). Thus, the anti-lipoxygenase effects of BAs are likely to have therapeutic implications.

**MMP mRNA quantitation**

The mRNA were quantified by real-time polymerase chain reaction (PCR) assay using double-stranded DNA binding dye SYBR Green-I as described previously (39). The primer set used for the genes were: _hβ-actin_ forward, 5’TGA CCA CTG GCA TCG TGA TGG ACT 3’T; _hβ-actin_ reverse, 5’CCG CTC ATT GCC ACC GAA GTT CAG 3’T; _hMMP-3_ forward, 5’GAG GCC TAT GAT ATG ATG ATG GCT 3’T; _hMMP-3_ reverse, 5’TACATTGCCACC TGG TGG AT 3’T; _hMMP10_ forward, 5’GCC ACT CTA CAA CAC ATG ATG CAG 3’T; _hMMP10_ reverse, 5’ACA AAG CAG GAT GAC CAC ACT TG 3’T; _hMMP12_
MMP-3 enzyme-linked immunosorbent assay (ELISA)

MMP-3 ELISA is a non-isotopic immunoassay for the in vitro quantitation of human MMP-3 protein. Pro-MMP-3 was detected from culture media using a commercially available ELISA kit (Oncogene Research Products, San Diego, CA) following the manufacturer’s instructions. This ELISA specifically detects pro-MMP-3 from protein samples.

MMP-3 activity assay

Total (pro- and active) MMP-3 activity was determined using a Biotrak MMP-3 activity assay system (Amersham Biosciences, Piscataway, NJ).

Freund’s adjuvant-induced inflammation

Wistar Albino rats were supplemented with BE30% (25, 50, and 100 mg/kg of body weight orally), BE3% (100 mg/kg of body weight orally) in 1% CMC, or prednisolone (10 mg/kg of body weight orally) for 30 days. The control group received the same volume of vehicle (i.e., 1% CMC) orally. On day 31, 50 μl of complete Freund’s adjuvant was injected subcutaneously in the subplantar region of the left hind paw. The paw volume was measured before and after the injection of Freund’s adjuvant. The difference in volume of edema on day 13 after injection and on the day of injection is calculated to estimate the inflammatory response (35).

Statistical analyses

Results were expressed as means ± standard deviation. Means were compared using analysis of variance. A value of p < 0.05 was interpreted as statistically significant.

RESULTS

Recently, we have conducted the first whole genome screen for TNFα-inducible genes in human microvascular cells. We had observed that out of 522 genes induced by TNFα in HMECs, 113 genes were significantly sensitive to BE30% treatment. Employing resources such as the GenMAPP, KEGG, and gene ontology, BE-sensitive TNFα-inducible pathways were identified (40). The MMP family emerged as a prominent class of TNFα-inducible genes sensitive to BE30%.

In this follow-up work, members of the MMP family of genes were subjected to hierarchical clustering. MMP-3, MMP-10, MMP-12, and MMP-19 were recognized as TNFα-inducible genes that were sensitive to BE30% (Fig. 1). A quantitative real-time PCR approach was utilized in this study to follow up on our results from the microarray study. In HMECs, TNFα caused a dose-dependent induction of MMP-3, MMP-10, and MMP-12 (Fig. 2). Pretreatment of HMECs for 2 days with BE30% potently prevented TNFα-induced expression of MMP-3, MMP-10, and MMP-12 (Fig. 3).

To test whether the AKBA content of BE influenced the observed outcome, BE30% was compared with BE3%. BE30% was observed to be significantly more potent than BE3% in preventing TNFα-induced expression of MMP-3, MMP-10, and MMP-12 (Fig. 3).

MMP-3 possesses well-defined critical biological functions (51). Thus, we sought to focus on the regulation of TNFα-inducible MMP-3 expression by BE. To test whether the observed effects of BE on TNFα-induced MMP-3 gene expression manifest at the level of protein expression, MMP-3 ELISA was performed. Consistent with the findings with quantitative gene expression, BE potently inhibited TNFα-induced MMP-3 protein expression. AKBA content of BE influenced the efficacy. BE30% was significantly more potent than BE3% in preventing TNFα-induced MMP3 protein expression (Fig. 4).

FIG. 1. Boswellia-sensitive genes of the MMP family in TNFα-treated HMECs. (Left panel) GeneChip data (40) were subjected to hierarchical clustering to visualize expression pattern of BE-sensitive MMP-family genes. TNFα, 50 ng/ml, 6 h; TNFα + BE, 48-h pretreatment with BE30% (25 mg/ml) followed by TNFα for 6 h. Red to green gradation in color represents higher to lower expression signal. (Upper right panel) The line graphs show the average pattern of gene expression in the corresponding cluster graph. (Lower right panel) The members [probe identification (ID) and gene abbreviations] of the cluster are shown. PDE8A, phosphodiesterase 8A. MMP-12 is also known as macrophage elastase; MMP-3, as stromelysin 1 or progelatinase; and MMP-10, as stromelysin 2.
MMP-3 is also a collagen-decomposing enzyme. To investigate the effect of BE on the TNFα/H9251-induced increase in MMP-3 activity, we employed an assay that uses the pro form of a detection enzyme that can be activated by captured active MMP-3, and converted into an active detection enzyme, through a single proteolytic event. MMP-activated detection enzyme is then measured using a specific chromogenic peptide substrate. Using this assay system, free active MMP-3 can be detected. In order to measure the total MMP-3 content any bound MMP-3 in its pro form was activated using p-aminophenylmercuric acetate. TNFα significantly induced MMP-3 activity in HMECs. Such inducible MMP-3 activity was significantly inhibited in the presence of BE. BE30% was significantly more potent than BE3% in restricting TNFα-induced MMP-3 activity in HMECs (Fig. 5).

Finally, we sought to test the anti-inflammatory properties of the two BE preparations in a setting of experimental arthritis. Prednisolone, used as a positive control, attenuated the adjuvant-induced inflammatory response. BE protected against the induced inflammatory response. The effect was maximal at the lowest dose studied. Compared to BE3%, BE30% was significantly more effective in preventing the adjuvant-induced inflammatory response in vivo (Fig. 6).

**DISCUSSION**

MMPs are a family of zinc-containing enzymes involved in the degradation and remodeling of extracellular matrix proteins. Under normal physiological conditions, the activities of these enzymes are well regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs). Chronic stimulation of MMP activities, due to an imbalance in the levels of MMPs and TIMPs, has been implicated in the pathogenesis of a variety of diseases such as cancer, osteoarthritis, and rheumatoid arthritis. Thus, MMP inhibitors are expected to be useful for the treatment of these disorders. Because of their importance in a variety of pathological conditions, several small-molecular-weight MMP inhibitors have entered clinical trials in humans. However, the results of these trials have been disappointing (47). Herbal medicines are widely used in the United States, with approximately one-quarter of adults reporting use of an herb to treat a medical illness within the past year. Of the 10 most commonly used herbs in the United States, systematic reviews have concluded that only four are likely to be effective, and there is very limited evidence to evaluate the efficacy of the approximately 20,000 other available products (6).
Stromelysin or MMP-3 production is increased in rheumatoid arthritis, and has been proposed as a marker of joint damage (33, 48). Direct evidence substantiating the implication of MMP-3 in inflammation has been reported (50). In addition to being pro-inflammatory, MMP-3 has been proven to be a cartilage-degrading enzyme (54). Recently, neurodegenerative properties of MMP-3 have been reported (25). The current work presents the first evidence demonstrating the ability of an herbal preparation, BE, to specifically inhibit inducible MMP-3 gene and protein expression as well as catalytic activity. Plant-derived compounds represent potential reducible MMP-3 activity. Plant-derived compounds may be utilized in the development of new drugs, especially designed for the treatment and control of several inflammatory states (9). Medicinal plants belonging to the Burseraceae family, including *Boswellia*, are especially known for their anti-inflammatory properties (16).

*B. serrata* (frankincense) has been used in traditional medicine for treatment of inflammatory diseases since antiquity. Osteoarthritis is a common, chronic, progressive, skeletal, degenerative disorder, which commonly affects the knee joint. An open multi-center Swiss veterinary clinical trial, comparing conditions before and after treatment with a herbal dietary supplement consisting of a natural resin extract of *B. serrata*, led to the conclusion that a standardized preparation of BE can be recommended as a herbal dietary supplement providing symptomatic support in canine osteoarthritic disease. In dogs with manifestations of chronic joint and spinal disease, it was observed that BE (40 mg/kg of body weight, once a day, for 6 weeks) significantly reduced the severity and caused resolution of typical clinical symptoms in 71% of 24 dogs eligible for the study (38). These findings in the canine are consistent with observations in humans. A randomized double-blind placebo-controlled crossover study has been conducted to assess the efficacy, safety, and tolerability of BE in 30 patients of osteoarthritis of the knee, with 15 each receiving active drug or placebo for 8 weeks. After the first intervention, washout was given, and then the groups were crossed over to receive the opposite intervention for 8 weeks. All patients receiving drug treatment reported significant decrease in knee pain, increased knee flexion, and increased walking distance. The frequency of swelling in the knee joint was significantly decreased (26).

Another inflammatory condition that has been clinically tested for its sensitivity to BE is colitis. Thirty patients (17 males and 13 females; age range 18–48 years) with...
chronic colitis were included in this study. Twenty patients were given a preparation of the gum resin of *B. serrata* (900 mg daily divided into three doses for 6 weeks), and 10 patients were given sulfasalazine (3 g daily divided into three doses for 6 weeks) and served as controls. Out of 20 patients treated with *Boswellia* gum resin, 18 patients showed an improvement in one or more parameters, including stool properties, histopathology as well as scanning electron microscopy, hemoglobin, serum iron, calcium, phosphorus, proteins, total leukocytes, and eosinophils. In the control group, six out of 10 patients showed similar results with the same parameters. Thus, the study showed that a gum resin preparation from *B. serrata* was effective in the treatment of chronic colitis (23). Consistent with this, BE has been observed to be beneficial in treating the inflammatory bowel disease ileitis (27).

BAs have been studied for over 30 years (17). AKBA is a naturally occurring pentacyclic triterpene isolated from the gum resin exudate from the stem of the tree *B. serrata*. AKBA has been recently identified as a novel, orally active, non-redox, non-competitive 5-lipoxygenase inhibitor that also inhibits topoisomerases I and II *in vitro* (34). This finding is consistent with our current finding that BE containing a higher concentration of AKBA is more effective as an anti-inflammatory agent. In humans, orally taken BE manifests as plasma keto-BA. The peak plasma levels of BE were reached at 4.5 h. The plasma concentration attained a steady state after approximately 30 h. BE has proven to be safe and well tolerated on oral administration in humans. No adverse effects were seen with this drug when administered as a single dose of 333 mg (46).

The inflammatory process in colitis is associated with increased formation of leukotrienes causing chemotaxis, chemokinesis, synthesis of superoxide radicals, and release of lysosomal enzymes by phagocytes. The key enzyme for leukotriene biosynthesis is 5-lipoxygenase. The pentacyclic triterpenes from the 11-keto-BA series have been identified as the active principal ingredients of *Boswellia* resin, inhibiting the key enzyme of leukotriene biosynthesis, 5-lipoxygenase (43, 45). Biochemical studies have established that BAs are selective, non-redox, potent inhibitors of the biosynthesis of leukotrienes *in vitro* (21, 53). Like other non-redox 5-lipoxygenase inhibitors, BAs require glutathione peroxidase for the efficient inhibition of 5-lipoxygenase activity (52). Among the BAs, AKBA induced the most pronounced inhibition of 5-lipoxygenase product formation with a 50% inhibitory concentration of about 15 µM. Dual inhibition of 5-lipoxygenase and human leukocyte elastase is unique to BAs (42). Both leukotriene formation and human leukocyte elastase release are increased simultaneously by neutrophil stimulation in a variety of inflammation- and hypersensitivity-based human diseases.

In sum, this work lends support to our previous reporting that BE has potent anti-inflammatory properties both *in vitro* and *in vivo*. Higher AKBA content improved the anti-inflammatory properties of BE. Although it has been recently reported that 11-keto-BA might function as a potent activator of polymorphonuclear leukocytes by stimulation of mitogen-activated protein kinase and mobilization of intracellular Ca2+ (1), very little is known about BE-sensitive pathways within the cell. Further studies characterizing the BE-sensitive mechanisms involved in regulating gene expression relevant to inflammation are warranted.

**ABBREVIATIONS**

AKBA, alpha-11-keto-boswellic acid; BA, boswellic acid; BE, *Boswellia* extract; CMC, carboxymethyl cellulose; ELISA, enzyme-linked immunosorbent assay; HMEC, human dermal microvascular endothelial cell; MMP, matrix metalloproteinase; PCR, polymerase chain reaction; TIMP, tissue inhibitor of metalloproteinases; TNF, tumor necrosis factor.

**REFERENCES**


